MathDB
Circle in a Parallelogram

Source: 2022 AIME I #11

February 9, 2022
AMCAIMEAIME Igeometryparallelogram

Problem Statement

Let ABCDABCD be a parallelogram with BAD<90\angle BAD < 90^{\circ}. A circle tangent to sides DA\overline{DA}, AB\overline{AB}, and BC\overline{BC} intersects diagonal AC\overline{AC} at points PP and QQ with AP<AQAP < AQ, as shown. Suppose that AP=3AP = 3, PQ=9PQ = 9, and QC=16QC = 16. Then the area of ABCDABCD can be expressed in the form mnm\sqrt n, where mm and nn are positive integers, and nn is not divisible by the square of any prime. Find m+nm+n.
[asy] defaultpen(linewidth(0.6)+fontsize(11)); size(8cm); pair A,B,C,D,P,Q; A=(0,0); label("AA", A, SW); B=(6,15); label("BB", B, NW); C=(30,15); label("CC", C, NE); D=(24,0); label("DD", D, SE); P=(5.2,2.6); label("PP", (5.8,2.6), N); Q=(18.3,9.1); label("QQ", (18.1,9.7), W); draw(A--B--C--D--cycle); draw(C--A); draw(Circle((10.95,7.45), 7.45)); dot(A^^B^^C^^D^^P^^Q); [/asy]