MathDB

2018 AIME Problems

Part of AIME Problems

Subcontests

(15)

The bash she tells you not to worry about

The wheel shown below consists of two circles and five spokes, with a label at each point where a spoke meets a circle. A bug walks along the wheel, starting at point AA. At every step of the process, the bug walks from one labeled point to an adjacent labeled point. Along the inner circle the bug only walks in a counterclockwise direction, and along the outer circle the bug only walks in a clockwise direction. For example, the bug could travel along the path AJABCHCHIJAAJABCHCHIJA, which has 1010 steps. Let nn be the number of paths with 1515 steps that begin and end at point AA. Find the remainder when nn is divided by 10001000.
[asy] unitsize(32); draw(unitcircle); draw(scale(2) * unitcircle); for(int d = 90; d < 360 + 90; d += 72){ draw(2 * dir(d) -- dir(d)); }
real s = 4; dot(1 * dir( 90), linewidth(s)); dot(1 * dir(162), linewidth(s)); dot(1 * dir(234), linewidth(s)); dot(1 * dir(306), linewidth(s)); dot(1 * dir(378), linewidth(s)); dot(2 * dir(378), linewidth(s)); dot(2 * dir(306), linewidth(s)); dot(2 * dir(234), linewidth(s)); dot(2 * dir(162), linewidth(s)); dot(2 * dir( 90), linewidth(s));
defaultpen(fontsize(10pt)); real r = 0.05; label("AA", (1-r) * dir( 90), -dir( 90)); label("BB", (1-r) * dir(162), -dir(162)); label("CC", (1-r) * dir(234), -dir(234)); label("DD", (1-r) * dir(306), -dir(306)); label("EE", (1-r) * dir(378), -dir(378)); label("FF", (2+r) * dir(378), dir(378)); label("GG", (2+r) * dir(306), dir(306)); label("HH", (2+r) * dir(234), dir(234)); label("II", (2+r) * dir(162), dir(162)); label("JJ", (2+r) * dir( 90), dir( 90)); [/asy]
9
2

Homothety vs. Shoelace

Octagon ABCDEFGHABCDEFGH with side lengths AB=CD=EF=GH=10AB = CD = EF = GH = 10 and BC=DE=FG=HA=11BC= DE = FG = HA = 11 is formed by removing four 68106-8-10 triangles from the corners of a 23×2723\times 27 rectangle with side AH\overline{AH} on a short side of the rectangle, as shown. Let JJ be the midpoint of HA\overline{HA}, and partition the octagon into 77 triangles by drawing segments JB\overline{JB}, JC\overline{JC}, JD\overline{JD}, JE\overline{JE}, JF\overline{JF}, and JG\overline{JG}. Find the area of the convex polygon whose vertices are the centroids of these 77 triangles.
[asy] unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("AA", A, W*r); label("BB", B, S*r); label("CC", C, S*r); label("DD", D, E*r); label("EE", EE, E*r); label("FF", F, N*r); label("GG", G, N*r); label("HH", H, W*r); label("JJ", J, W*r); [/asy]