MathDB
Homothety vs. Shoelace

Source: 2018 AIME II #9

March 23, 2018
geometrygeometric transformationhomothetyAIMEAIME IIshoelacetheorem

Problem Statement

Octagon ABCDEFGHABCDEFGH with side lengths AB=CD=EF=GH=10AB = CD = EF = GH = 10 and BC=DE=FG=HA=11BC= DE = FG = HA = 11 is formed by removing four 68106-8-10 triangles from the corners of a 23×2723\times 27 rectangle with side AH\overline{AH} on a short side of the rectangle, as shown. Let JJ be the midpoint of HA\overline{HA}, and partition the octagon into 77 triangles by drawing segments JB\overline{JB}, JC\overline{JC}, JD\overline{JD}, JE\overline{JE}, JF\overline{JF}, and JG\overline{JG}. Find the area of the convex polygon whose vertices are the centroids of these 77 triangles.
[asy] unitsize(6); pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0); pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17); draw(P--Q--R--SS--cycle); draw(J--B); draw(J--C); draw(J--D); draw(J--EE); draw(J--F); draw(J--G); draw(A--B); draw(H--G); real dark = 0.6; filldraw(A--B--P--cycle, gray(dark)); filldraw(H--G--Q--cycle, gray(dark)); filldraw(F--EE--R--cycle, gray(dark)); filldraw(D--C--SS--cycle, gray(dark)); dot(A); dot(B); dot(C); dot(D); dot(EE); dot(F); dot(G); dot(H); dot(J); dot(H); defaultpen(fontsize(10pt)); real r = 1.3; label("AA", A, W*r); label("BB", B, S*r); label("CC", C, S*r); label("DD", D, E*r); label("EE", EE, E*r); label("FF", F, N*r); label("GG", G, N*r); label("HH", H, W*r); label("JJ", J, W*r); [/asy]