Homothety vs. Shoelace
Source: 2018 AIME II #9
March 23, 2018
geometrygeometric transformationhomothetyAIMEAIME IIshoelacetheorem
Problem Statement
Octagon with side lengths and is formed by removing four triangles from the corners of a rectangle with side on a short side of the rectangle, as shown. Let be the midpoint of , and partition the octagon into triangles by drawing segments , , , , , and . Find the area of the convex polygon whose vertices are the centroids of these triangles.[asy]
unitsize(6);
pair P = (0, 0), Q = (0, 23), R = (27, 23), SS = (27, 0);
pair A = (0, 6), B = (8, 0), C = (19, 0), D = (27, 6), EE = (27, 17), F = (19, 23), G = (8, 23), J = (0, 23/2), H = (0, 17);
draw(P--Q--R--SS--cycle);
draw(J--B);
draw(J--C);
draw(J--D);
draw(J--EE);
draw(J--F);
draw(J--G);
draw(A--B);
draw(H--G);
real dark = 0.6;
filldraw(A--B--P--cycle, gray(dark));
filldraw(H--G--Q--cycle, gray(dark));
filldraw(F--EE--R--cycle, gray(dark));
filldraw(D--C--SS--cycle, gray(dark));
dot(A);
dot(B);
dot(C);
dot(D);
dot(EE);
dot(F);
dot(G);
dot(H);
dot(J);
dot(H);
defaultpen(fontsize(10pt));
real r = 1.3;
label("", A, W*r);
label("", B, S*r);
label("", C, S*r);
label("", D, E*r);
label("", EE, E*r);
label("", F, N*r);
label("", G, N*r);
label("", H, W*r);
label("", J, W*r);
[/asy]