Subcontests
(15)Summation of Trig Function: Sequence
Define the sequence a1,a2,a3,… by an=∑k=1nsin(k), where k represents radian measure. Find the index of the 100th term for which an<0. Smallest Element of Subset
Consider all 1000-element subsets of the set {1,2,3,…,2015}. From each such subset choose the least element. The arithmetic mean of all of these least elements is qp, where p and q are relatively prime positive integers. Find p+q. Recursion
Call a permutation a1,a2,…,an quasi-increasing if ak≤ak+1+2 for each 1≤k≤n−1. For example, 54321 and 14253 are quasi-increasing permutations of the integers 1,2,3,4,5, but 45123 is not. Find the number of quasi-increasing permutations of the integers 1,2,…,7. Recursions going to zero
Let S be the set of all ordered triples of integers (a1,a2,a3) with 1≤a1,a2,a3≤10. Each ordered triple in S generates a sequence according to the rule an=an−1⋅∣an−2−an−3∣ for all n≥4. Find the number of such sequences for which an=0 for some n. Solid Cube Placed Within a Cylinder with Water
A cylindrical barrel with radius 4 feet and height 10 feet is full of water. A solid cube with side length 8 feet is set into the barrel so that the diagonal of the cube is vertical. The volume of water thus displaced is v cubic feet. Find v2.[asy]
import three; import solids;
size(5cm);
currentprojection=orthographic(1,-1/6,1/6);draw(surface(revolution((0,0,0),(-2,-2*sqrt(3),0)--(-2,-2*sqrt(3),-10),Z,0,360)),white,nolight);triple A =(8*sqrt(6)/3,0,8*sqrt(3)/3), B = (-4*sqrt(6)/3,4*sqrt(2),8*sqrt(3)/3), C = (-4*sqrt(6)/3,-4*sqrt(2),8*sqrt(3)/3), X = (0,0,-2*sqrt(2));draw(X--X+A--X+A+B--X+A+B+C);
draw(X--X+B--X+A+B);
draw(X--X+C--X+A+C--X+A+B+C);
draw(X+A--X+A+C);
draw(X+C--X+C+B--X+A+B+C,linetype("2 4"));
draw(X+B--X+C+B,linetype("2 4"));draw(surface(revolution((0,0,0),(-2,-2*sqrt(3),0)--(-2,-2*sqrt(3),-10),Z,0,240)),white,nolight);
draw((-2,-2*sqrt(3),0)..(4,0,0)..(-2,2*sqrt(3),0));
draw((-4*cos(atan(5)),-4*sin(atan(5)),0)--(-4*cos(atan(5)),-4*sin(atan(5)),-10)..(4,0,-10)..(4*cos(atan(5)),4*sin(atan(5)),-10)--(4*cos(atan(5)),4*sin(atan(5)),0));
draw((-2,-2*sqrt(3),0)..(-4,0,0)..(-2,2*sqrt(3),0),linetype("2 4"));
[/asy] Many Inscribed Squares
In the diagram below, ABCD is a square. Point E is the midpoint of AD. Points F and G lie on CE, and H and J lie on AB and BC, respectively, so that FGHJ is a square. Points K and L lie on GH, and M and N lie on AD and AB, respectively, so that KLMN is a square. The area of KLMN is 99. Find the area of FGHJ.
[asy]
pair A,B,C,D,E,F,G,H,J,K,L,M,N;
B=(0,0);
real m=7*sqrt(55)/5;
J=(m,0);
C=(7*m/2,0);
A=(0,7*m/2);
D=(7*m/2,7*m/2);
E=(A+D)/2;
H=(0,2m);
N=(0,2m+3*sqrt(55)/2);
G=foot(H,E,C);
F=foot(J,E,C);
draw(A--B--C--D--cycle);
draw(C--E);
draw(G--H--J--F);
pair X=foot(N,E,C);
M=extension(N,X,A,D);
K=foot(N,H,G);
L=foot(M,H,G);
draw(K--N--M--L);
label("A",A,NW);
label("B",B,SW);
label("C",C,SE);
label("D",D,NE);
label("E",E,dir(90));
label("F",F,NE);
label("G",G,NE);
label("H",H,W);
label("J",J,S);
label("K",K,SE);
label("L",L,SE);
label("M",M,dir(90));
label("N",N,dir(180));
[/asy] Angles in Minor Arcs
Point A,B,C,D, and E are equally spaced on a minor arc of a circle. Points E,F,G,H,I and A are equally spaced on a minor arc of a second circle with center C as shown in the figure below. The angle ∠ABD exceeds ∠AHG by 12∘. Find the degree measure of ∠BAG.[asy]
pair A,B,C,D,E,F,G,H,I,O;
O=(0,0);
C=dir(90);
B=dir(70);
A=dir(50);
D=dir(110);
E=dir(130);
draw(arc(O,1,50,130));
real x=2*sin(20*pi/180);
F=x*dir(228)+C;
G=x*dir(256)+C;
H=x*dir(284)+C;
I=x*dir(312)+C;
draw(arc(C,x,200,340));
label("A",A,dir(0));
label("B",B,dir(75));
label("C",C,dir(90));
label("D",D,dir(105));
label("E",E,dir(180));
label("F",F,dir(225));
label("G",G,dir(260));
label("H",H,dir(280));
label("I",I,dir(315));
[/asy] Slanted Cross-Section of Cylindrical Block of Wood
A block of wood has the shape of a right circular cylinder with radius 6 and height 8, and its entire surface has been painted blue. Points A and B are chosen on the edge on one of the circular faces of the cylinder so that \overarc{AB} on that face measures 120∘. The block is then sliced in half along the plane that passes through point A, point B, and the center of the cylinder, revealing a flat, unpainted face on each half. The area of one of those unpainted faces is a⋅π+bc, where a, b, and c are integers and c is not divisible by the square of any prime. Find a+b+c.
[asy]import three; import solids;
size(8cm);
currentprojection=orthographic(-1,-5,3);
picture lpic, rpic;
size(lpic,5cm);
draw(lpic,surface(revolution((0,0,0),(-3,3*sqrt(3),0)..(0,6,4)..(3,3*sqrt(3),8),Z,0,120)),gray(0.7),nolight);
draw(lpic,surface(revolution((0,0,0),(-3*sqrt(3),-3,8)..(-6,0,4)..(-3*sqrt(3),3,0),Z,0,90)),gray(0.7),nolight);
draw(lpic,surface((3,3*sqrt(3),8)..(-6,0,8)..(3,-3*sqrt(3),8)--cycle),gray(0.7),nolight);
draw(lpic,(3,-3*sqrt(3),8)..(-6,0,8)..(3,3*sqrt(3),8));
draw(lpic,(-3,3*sqrt(3),0)--(-3,-3*sqrt(3),0),dashed);
draw(lpic,(3,3*sqrt(3),8)..(0,6,4)..(-3,3*sqrt(3),0)--(-3,3*sqrt(3),0)..(-3*sqrt(3),3,0)..(-6,0,0),dashed);
draw(lpic,(3,3*sqrt(3),8)--(3,-3*sqrt(3),8)..(0,-6,4)..(-3,-3*sqrt(3),0)--(-3,-3*sqrt(3),0)..(-3*sqrt(3),-3,0)..(-6,0,0));
draw(lpic,(6*cos(atan(-1/5)+3.14159),6*sin(atan(-1/5)+3.14159),0)--(6*cos(atan(-1/5)+3.14159),6*sin(atan(-1/5)+3.14159),8));
size(rpic,5cm);
draw(rpic,surface(revolution((0,0,0),(3,3*sqrt(3),8)..(0,6,4)..(-3,3*sqrt(3),0),Z,230,360)),gray(0.7),nolight);
draw(rpic,surface((-3,3*sqrt(3),0)..(6,0,0)..(-3,-3*sqrt(3),0)--cycle),gray(0.7),nolight);
draw(rpic,surface((-3,3*sqrt(3),0)..(0,6,4)..(3,3*sqrt(3),8)--(3,3*sqrt(3),8)--(3,-3*sqrt(3),8)--(3,-3*sqrt(3),8)..(0,-6,4)..(-3,-3*sqrt(3),0)--cycle),white,nolight);
draw(rpic,(-3,-3*sqrt(3),0)..(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),0)..(6,0,0));
draw(rpic,(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),0)..(6,0,0)..(-3,3*sqrt(3),0),dashed);
draw(rpic,(3,3*sqrt(3),8)--(3,-3*sqrt(3),8));
draw(rpic,(-3,3*sqrt(3),0)..(0,6,4)..(3,3*sqrt(3),8)--(3,3*sqrt(3),8)..(3*sqrt(3),3,8)..(6,0,8));
draw(rpic,(-3,3*sqrt(3),0)--(-3,-3*sqrt(3),0)..(0,-6,4)..(3,-3*sqrt(3),8)--(3,-3*sqrt(3),8)..(3*sqrt(3),-3,8)..(6,0,8));
draw(rpic,(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),0)--(-6*cos(atan(-1/5)+3.14159),-6*sin(atan(-1/5)+3.14159),8));
label(rpic,"A",(-3,3*sqrt(3),0),W);
label(rpic,"B",(-3,-3*sqrt(3),0),W);
add(lpic.fit(),(0,0));
add(rpic.fit(),(1,0));[/asy] Circles Tangent to a Points: Find Area of Region
Circles P and Q have radii 1 and 4, respectively, and are externally tangent at point A. Point B is on P and point C is on Q so that line BC is a common external tangent of the two circles. A line ℓ through A intersects P again at D and intersects Q again at E. Points B and C lie on the same side of ℓ, and the areas of △DBA and △ACE are equal. This common area is nm, where m and n are relatively prime positive integers. Find m+n.[asy]
import cse5;
pathpen=black; pointpen=black;
size(6cm);pair E = IP(L((-.2476,1.9689),(0.8,1.6),-3,5.5),CR((4,4),4)), D = (-.2476,1.9689);filldraw(D--(0.8,1.6)--(0,0)--cycle,gray(0.7));
filldraw(E--(0.8,1.6)--(4,0)--cycle,gray(0.7));
D(CR((0,1),1)); D(CR((4,4),4,150,390));
D(L(MP("D",D(D),N),MP("A",D((0.8,1.6)),NE),1,5.5));
D((-1.2,0)--MP("B",D((0,0)),S)--MP("C",D((4,0)),S)--(8,0));
D(MP("E",E,N));
[/asy]