7
Part of 2015 AIME Problems
Problems(2)
Many Inscribed Squares
Source: 2015 AIME I Problem 7
3/20/2015
In the diagram below, is a square. Point is the midpoint of . Points and lie on , and and lie on and , respectively, so that is a square. Points and lie on , and and lie on and , respectively, so that is a square. The area of is 99. Find the area of .
[asy]
pair A,B,C,D,E,F,G,H,J,K,L,M,N;
B=(0,0);
real m=7*sqrt(55)/5;
J=(m,0);
C=(7*m/2,0);
A=(0,7*m/2);
D=(7*m/2,7*m/2);
E=(A+D)/2;
H=(0,2m);
N=(0,2m+3*sqrt(55)/2);
G=foot(H,E,C);
F=foot(J,E,C);
draw(A--B--C--D--cycle);
draw(C--E);
draw(G--H--J--F);
pair X=foot(N,E,C);
M=extension(N,X,A,D);
K=foot(N,H,G);
L=foot(M,H,G);
draw(K--N--M--L);
label("",A,NW);
label("",B,SW);
label("",C,SE);
label("",D,NE);
label("",E,dir(90));
label("",F,NE);
label("",G,NE);
label("",H,W);
label("",J,S);
label("",K,SE);
label("",L,SE);
label("",M,dir(90));
label("",N,dir(180));
[/asy]
AMCAIMEAIME I2015 AIME I
Area of Rectangle Inscribed in Triangle
Source: 2015 AIME 2 Problem 7
3/26/2015
Triangle has side lengths , , and . Rectangle has vertex on , vertex on , and vertices and on . In terms of the side length , the area of can be expressed as the quadratic polynomial
Then the coefficient , where and are relatively prime positive integers. Find .
geometryrectangle