MathDB

Problems(6)

System of three equations

Source: Romania NMO 2021 grade 7

4/25/2021
Solve the system in reals: 4ab=5ba=10a2+b2\frac{4-a}{b}=\frac{5-b}{a}=\frac{10}{a^2+b^2}.
algebra
Easy refinement of (a+b+c)(1/a+1/b+1/c)\ge 9

Source: Romanian NMO 2021 grade 8 P2

4/15/2023
Prove that for all positive real numbers a,b,ca,b,c the following inequality holds: (a+b+c)(1a+1b+1c)2(a2+b2+c2)ab+bc+ca+7(a+b+c)\left(\frac1a+\frac1b+\frac1c\right)\ge\frac{2(a^2+b^2+c^2)}{ab+bc+ca}+7 and determine all cases of equality.
Lucian Petrescu
inequalities
maximum length of vector

Source: Romanian NMO 2021 grade 9 P2

4/15/2023
Let P0,P1,,P2021P_0, P_1,\ldots, P_{2021} points on the unit circle of centre OO such that for each n{1,2,,2021}n\in \{1,2,\ldots, 2021\} the length of the arc from Pn1P_{n-1} to PnP_n (in anti-clockwise direction) is in the interval [π2,π]\left[\frac{\pi}2,\pi\right]. Determine the maximum possible length of the vector: OP0+OP1++OP2021.\overrightarrow{OP_0}+\overrightarrow{OP_1}+\ldots+\overrightarrow{OP_{2021}}.
Mihai Iancu
vectorgeometrytrigonometry
floor of (an+b)/(cn+d) is surjective

Source: Romanian NMO 2021 grade 10 P2

4/15/2023
Let a,b,c,dZ0a,b,c,d\in\mathbb{Z}_{\ge 0}, d0d\ne 0 and the function f:Z0Z0f:\mathbb{Z}_{\ge 0}\to\mathbb Z_{\ge 0} defined by f(n)=an+bcn+d for all nZ0.f(n)=\left\lfloor \frac{an+b}{cn+d}\right\rfloor\text{ for all } n\in\mathbb{Z}_{\ge 0}. Prove that the following are equivalent:
[*] ff is surjective; [*] c=0c=0, b<db<d and 0<ad0<a\le d.
Tiberiu Trif
floor functionalgebrafunction
Romania National Olympiad Grade 11 P2

Source:

4/28/2021
Let n2n \ge 2 and a1,a2,,an a_1, a_2, \ldots , a_n , nonzero real numbers not necessarily distinct. We define matrix A=(aij)1i,jnMn(R)A = (a_{ij})_{1 \le i,j \le n} \in M_n( \mathbb{R} ) , ai,j=max{ai,aj}a_{i,j} = max \{ a_i, a_j \}, i,j{1,2,,n}\forall i,j \in \{ 1,2 , \ldots , n \} . Show that rank(A)\mathbf{rank}(A) = card\mathbf{card} {akk=1,2,n}\{ a_k | k = 1,2, \ldots n \}
linear algebra
Sum of elements in ring is invertible

Source: Romanian NMO 2021 grade 12 P2

4/15/2023
Determine all non-trivial finite rings with am unit element in which the sum of all elements is invertible.
Mihai Opincariu
superior algebraRings