MathDB
floor of (an+b)/(cn+d) is surjective

Source: Romanian NMO 2021 grade 10 P2

April 15, 2023
floor functionalgebrafunction

Problem Statement

Let a,b,c,dZ0a,b,c,d\in\mathbb{Z}_{\ge 0}, d0d\ne 0 and the function f:Z0Z0f:\mathbb{Z}_{\ge 0}\to\mathbb Z_{\ge 0} defined by f(n)=an+bcn+d for all nZ0.f(n)=\left\lfloor \frac{an+b}{cn+d}\right\rfloor\text{ for all } n\in\mathbb{Z}_{\ge 0}. Prove that the following are equivalent:
[*] ff is surjective; [*] c=0c=0, b<db<d and 0<ad0<a\le d.
Tiberiu Trif