MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania National Olympiad
2021 Romania National Olympiad
2
floor of (an+b)/(cn+d) is surjective
floor of (an+b)/(cn+d) is surjective
Source: Romanian NMO 2021 grade 10 P2
April 15, 2023
floor function
algebra
function
Problem Statement
Let
a
,
b
,
c
,
d
∈
Z
≥
0
a,b,c,d\in\mathbb{Z}_{\ge 0}
a
,
b
,
c
,
d
∈
Z
≥
0
,
d
≠
0
d\ne 0
d
=
0
and the function
f
:
Z
≥
0
→
Z
≥
0
f:\mathbb{Z}_{\ge 0}\to\mathbb Z_{\ge 0}
f
:
Z
≥
0
→
Z
≥
0
defined by
f
(
n
)
=
⌊
a
n
+
b
c
n
+
d
⌋
for all
n
∈
Z
≥
0
.
f(n)=\left\lfloor \frac{an+b}{cn+d}\right\rfloor\text{ for all } n\in\mathbb{Z}_{\ge 0}.
f
(
n
)
=
⌊
c
n
+
d
an
+
b
⌋
for all
n
∈
Z
≥
0
.
Prove that the following are equivalent:[*]
f
f
f
is surjective; [*]
c
=
0
c=0
c
=
0
,
b
<
d
b<d
b
<
d
and
0
<
a
≤
d
0<a\le d
0
<
a
≤
d
. Tiberiu Trif
Back to Problems
View on AoPS