MathDB
Romania National Olympiad Grade 11 P2

Source:

April 28, 2021
linear algebra

Problem Statement

Let n2n \ge 2 and a1,a2,,an a_1, a_2, \ldots , a_n , nonzero real numbers not necessarily distinct. We define matrix A=(aij)1i,jnMn(R)A = (a_{ij})_{1 \le i,j \le n} \in M_n( \mathbb{R} ) , ai,j=max{ai,aj}a_{i,j} = max \{ a_i, a_j \}, i,j{1,2,,n}\forall i,j \in \{ 1,2 , \ldots , n \} . Show that rank(A)\mathbf{rank}(A) = card\mathbf{card} {akk=1,2,n}\{ a_k | k = 1,2, \ldots n \}