MathDB

Problems(6)

angle bisector, 135-30-15 triangle (2016 Romanian NMO grade VII P2)

Source:

6/1/2020
Consider the triangle ABCABC, where B=30o,C=15o\angle B= 30^o, \angle C = 15^o, and MM is the midpoint of the side [BC][BC]. Let point N(BC)N \in (BC) be such that [NC]=[AB][NC] = [AB]. Show that [AN[AN is the angle bisector of MACMAC
geometryangle bisectorequal segmentsangles
perp. common in cube, D'M/D'C=DN/DA'=1/3 (2016 Romanian NMO grade VII P2)

Source:

6/1/2020
In a cube ABCDABCDABCDA'B'C'D' two points are considered, M(CD)M \in (CD') and N(DA)N \in (DA'). Show that the MNMN is common perpendicular to the lines CDCD' and DADA' if and only if DMDC=DNDA=13.\frac{D'M}{D'C}=\frac{DN}{DA'} =\frac{1}{3}.
3D geometrygeometrycubeperpendicularratio
Inequality involving the terms of a fast increasing finite series

Source: Romania National Olympiad 2016, grade ix, p.2

8/25/2019
Let be a natural number n2 n\ge 2 and n n positive real numbers a1,an,,an a_1,a_n,\ldots ,a_n that satisfy the inequalities \sum_{j=1}^i a_j\le a_{i+1} ,  \forall i\in\{ 1,2,\ldots ,n-1 \} . Prove that k=1n1akak+1n/2. \sum_{k=1}^{n-1} \frac{a_k}{a_{k+1}}\le n/2 .
inequalitiesn-variable inequality
Equalities and inequalities of ranks

Source: Romanian National Olympiad 2016, grade xi, p.2

8/25/2019
Consider a natural number, n2, n\ge 2, and three n×n n\times n complex matrices A,B,C A,B,C such that A A is invertible, B B is formed by replacing the first line of A A with zeroes, and C C is formed by putting the last n1 n-1 lines of A A above a line of zeroes. Prove that:
a) rank(A1B)=rank((A1B)2)==rank((A1B)n) \text{rank} \left( A^{-1} B \right) = \text{rank} \left( \left( A^{-1} B\right)^2 \right) =\cdots =\text{rank} \left( \left( A^{-1} B\right)^n \right) b) rank(A1C)>rank((A1C)2)>>rank((A1C)n) \text{rank} \left( A^{-1} C \right) > \text{rank} \left( \left( A^{-1} C\right)^2 \right) >\cdots >\text{rank} \left( \left( A^{-1} C\right)^n \right)
linear algebrarank
Inequality results about some function

Source: Romania National Olympiad 2016, grade x, p.2

8/25/2019
Let be a function f:RR f:\mathbb{R}\longrightarrow\mathbb{R} satisfying the conditions: {f(x+y)f(x)+f(y)f(tx+(1t)y)t(f(x))+(1t)f(y), \left\{\begin{matrix} f(x+y) &\le & f(x)+f(y) \\ f(tx+(1-t)y) &\le & t(f(x)) +(1-t)f(y) \end{matrix}\right. , for all real numbers x,y,t x,y,t with t[0,1]. t\in [0,1] .
Prove that: a) f(b)+f(c)f(a)+f(d), f(b)+f(c)\le f(a)+f(d) , for any real numbers a,b,c,d a,b,c,d such that abcd a\le b\le c\le d and dc=ba. d-c=b-a. b) for any natural number n3 n\ge 3 and any n n real numbers x1,x2,,xn, x_1,x_2,\ldots ,x_n, the following inequality holds. f(1inxi)+(n2)1inf(xi)1i<jnf(xi+xj) f\left( \sum_{1\le i\le n} x_i \right) +(n-2)\sum_{1\le i\le n} f\left( x_i \right)\ge \sum_{1\le i<j\le n} f\left( x_i+x_j \right)
functioninequalitiesinduction
Romanian National Olympiad 2016 (correction)

Source: Romanian National Olympiad 2016, grade 12, problem 2

12/29/2023
Let AA be a ring and let DD be the set of its non-invertible elements. If a2=0a^2=0 for any aD,a \in D, prove that: a) axa=0axa=0 for all aDa \in D and xAx \in A; b) if DD is a finite set with at least two elements, then there is aD,a \in D, a0,a \neq 0, such that ab=ba=0,ab=ba=0, for every bD.b \in D.
Ioan Băetu
abstract algebraRing Theory