MathDB
perp. common in cube, D'M/D'C=DN/DA'=1/3 (2016 Romanian NMO grade VII P2)

Source:

June 1, 2020
3D geometrygeometrycubeperpendicularratio

Problem Statement

In a cube ABCDABCDABCDA'B'C'D' two points are considered, M(CD)M \in (CD') and N(DA)N \in (DA'). Show that the MNMN is common perpendicular to the lines CDCD' and DADA' if and only if DMDC=DNDA=13.\frac{D'M}{D'C}=\frac{DN}{DA'} =\frac{1}{3}.