Source: Romania National Olympiad 2016, grade x, p.2
August 25, 2019
functioninequalitiesinduction
Problem Statement
Let be a function f:R⟶R satisfying the conditions:
{f(x+y)f(tx+(1−t)y)≤≤f(x)+f(y)t(f(x))+(1−t)f(y),
for all real numbers x,y,t with t∈[0,1].Prove that:
a) f(b)+f(c)≤f(a)+f(d), for any real numbers a,b,c,d such that a≤b≤c≤d and d−c=b−a.
b) for any natural number n≥3 and any n real numbers x1,x2,…,xn, the following inequality holds.
f(1≤i≤n∑xi)+(n−2)1≤i≤n∑f(xi)≥1≤i<j≤n∑f(xi+xj)