MathDB

Problems(3)

EF/BC+EG / AD=1 1999 Romania NMO VII p4

Source:

8/14/2024
In the triangle ABCABC, let D(BC)D \in (BC), E(AB)E \in (AB), EFBCEF \parallel BC, F(AC)F \in (AC), EGADEG\parallel AD, G(BC)G\in (BC) and M,NM,N be the midpoints of (AD)(AD) and (BC)(BC), respectively. Prove that:
a) EFBC+EGAD=1\frac{EF}{BC}+\frac{EG}{AD}=1
b) the midpoint of [FG][FG] lies on the line MN MN.
geometryratio
_|_ planes wanted, regular pyramid 1999 Romania NMO VIII p4

Source:

8/14/2024
Let SABCSABC be a regular pyramid, OO the center of basis ABCABC, and MM the midpoint of [BC][BC]. If N[SA]N \in [SA] such that SA=25NSSA = 25 \cdot NS and SOMN={P}SO \cap MN=\{P\}, AM=2SOAM=2\cdot SO, prove that the planes (ABP)(ABP) and (SBC)(SBC) are perpendicular.
geometry3D geometrypyramid
f(m x+(1- m)y) < m f{x)+(1- m)f(y), parallelogram on graph

Source: 1999 Romania NMO IX p4

8/15/2024
a) Let a,bRa,b\in R, a<ba <b. Prove that x(a,b)x \in (a,b) if and only if there exists λ(0,1)\lambda \in (0,1) such that x=λa+(1λ)bx=\lambda a +(1-\lambda)b.
b) If the function f:RRf: R \to R has the property: f(λx+(1λ)y)<λf(x)+(1λ)f(y),x,yR,xy,λ(0,1),f (\lambda x+(1-\lambda) y) < \lambda f(x) + (1-\lambda)f(y), \forall x,y \in R, x\ne y, \forall \lambda \in (0,1), prove that one cannot find four points on the function’s graph that are the vertices of a parallelogram
geometryparallelogramalgebrainequalities