MathDB
f(m x+(1- m)y) < m f{x)+(1- m)f(y), parallelogram on graph

Source: 1999 Romania NMO IX p4

August 15, 2024
geometryparallelogramalgebrainequalities

Problem Statement

a) Let a,bRa,b\in R, a<ba <b. Prove that x(a,b)x \in (a,b) if and only if there exists λ(0,1)\lambda \in (0,1) such that x=λa+(1λ)bx=\lambda a +(1-\lambda)b.
b) If the function f:RRf: R \to R has the property: f(λx+(1λ)y)<λf(x)+(1λ)f(y),x,yR,xy,λ(0,1),f (\lambda x+(1-\lambda) y) < \lambda f(x) + (1-\lambda)f(y), \forall x,y \in R, x\ne y, \forall \lambda \in (0,1), prove that one cannot find four points on the function’s graph that are the vertices of a parallelogram