MathDB
EF/BC+EG / AD=1 1999 Romania NMO VII p4

Source:

August 14, 2024
geometryratio

Problem Statement

In the triangle ABCABC, let D(BC)D \in (BC), E(AB)E \in (AB), EFBCEF \parallel BC, F(AC)F \in (AC), EGADEG\parallel AD, G(BC)G\in (BC) and M,NM,N be the midpoints of (AD)(AD) and (BC)(BC), respectively. Prove that:
a) EFBC+EGAD=1\frac{EF}{BC}+\frac{EG}{AD}=1
b) the midpoint of [FG][FG] lies on the line MN MN.