MathDB

Problems(4)

Engaging geometry collinearity

Source:

7/5/2020
O O is the center of a parallelogram ABCD. ABCD. Let G G on the segment OB OB (excluding its endpoints), N N on the line DC DC and M M on the segment AD AD (excluding its endpoints) such that CN>ND,AM=6MD CN>ND, AM=6MD and so that there exists a natural number n3 n\ge 3 such that OB=nGO. OB=nGO. Show that G,M,N G,M,N are collinear if and only if (CNND6)(n+1)=2. \left( \frac{CN}{ND} -6 \right) (n+1)=2.
geometryparallelogram
cos(a)+cos(b)+cos(c)=sin(a)+sin(b)+sin(c)=0

Source:

7/5/2020
Let a,b,c a,b,c be three real numbers such that cosa+cosb+cosc=sina+sinb+sinc=0. \cos a+\cos b+\cos c=\sin a+\sin b+\sin c=0. Prove that i) cos6a+cos6b+cos6c=3cos(2a+2b+2c) \cos 6a+\cos 6b+\cos 6c=3\cos (2a+2b+2c) ii) sin6a+sin6b+sin6c=3sin(2a+2b+2c) \sin 6a+\sin 6b+\sin 6c=3\sin (2a+2b+2c)
Vasile Pop
trigonometryinequalitiesTrigonometric inequalityalgebra
Complex eigenvalues; 4 matrices

Source:

7/5/2020
Let be four n×n n\times n real matrices A,B,C,D A,B,C,D having the property that C+D1 C+D\sqrt{-1} is the inverse of A+B1. A+B\sqrt{-1} . Show that det(A+B1)2detC=detA. \left| \det\left( A+B\sqrt{-1} \right) \right|^2\cdot\left| \det C \right| =\det A.
Vasile Pop
eigenvaluematriesMatriceslinear algebra
A rational antiderivative

Source:

7/5/2020
1+2x31+x22x3+x6dx \int \frac{1+2x^3}{1+x^2-2x^3+x^6} dx
Ion Nedelcu and Lucian Tutescu
integrationIndefinite integralantiderivativecalculus