MathDB
cos(a)+cos(b)+cos(c)=sin(a)+sin(b)+sin(c)=0

Source:

July 5, 2020
trigonometryinequalitiesTrigonometric inequalityalgebra

Problem Statement

Let a,b,c a,b,c be three real numbers such that cosa+cosb+cosc=sina+sinb+sinc=0. \cos a+\cos b+\cos c=\sin a+\sin b+\sin c=0. Prove that i) cos6a+cos6b+cos6c=3cos(2a+2b+2c) \cos 6a+\cos 6b+\cos 6c=3\cos (2a+2b+2c) ii) sin6a+sin6b+sin6c=3sin(2a+2b+2c) \sin 6a+\sin 6b+\sin 6c=3\sin (2a+2b+2c)
Vasile Pop