MathDB
Complex eigenvalues; 4 matrices

Source:

July 5, 2020
eigenvaluematriesMatriceslinear algebra

Problem Statement

Let be four n×n n\times n real matrices A,B,C,D A,B,C,D having the property that C+D1 C+D\sqrt{-1} is the inverse of A+B1. A+B\sqrt{-1} . Show that det(A+B1)2detC=detA. \left| \det\left( A+B\sqrt{-1} \right) \right|^2\cdot\left| \det C \right| =\det A.
Vasile Pop