MathDB

Problems(6)

A,P,Q are collinear iff AC=AB\sqrt2 (2013 Romania District VII P3)

Source:

5/20/2020
On the sides (AB)(AB) and (AC)(AC) of the triangle ABCABC are considered the points MM and NN respectively so that ABC=ANM \angle ABC =\angle ANM. Point DD is symmetric of point AA with respect to BB, and PP and QQ are the midpoints of the segments [MN][MN] and [CD][CD], respectively. Prove that the points A,PA, P and QQ are collinear if and only if AC=AB2AC = AB \sqrt {2}
geometrycollinearequal anglesmidpoint
Inequality

Source: Romania District Olympiad 2013,grade IX(problem 3)

3/10/2013
Let nNn\in {{\mathbb{N}}^{*}} and a1,a2,...,anR{{a}_{1}},{{a}_{2}},...,{{a}_{n}}\in \mathbb{R} so a1+a2+...+akk,()k{1,2,...,n}.{{a}_{1}}+{{a}_{2}}+...+{{a}_{k}}\le k,\left( \forall \right)k\in \left\{ 1,2,...,n \right\}.Prove that a11+a22+...+ann11+12+...+1n\frac{{{a}_{1}}}{1}+\frac{{{a}_{2}}}{2}+...+\frac{{{a}_{n}}}{n}\le \frac{1}{1}+\frac{1}{2}+...+\frac{1}{n}
inequalitiesinequalities proposed
distance of perpendicular lines, regular hexagonal prism

Source: 2013 Romania District VIII P3

5/19/2020
Let be the regular hexagonal prism ABCDEFABCDEFABCDEFA'B C'D'E'F' with the base edge of 1212 and the height of 12312 \sqrt{3}. We denote by NN the middle of the edge CCCC'.
a) Prove that the lines BFBF' and NDND are perpendicular
b) Calculate the distance between the lines BFBF' and NDND.
prism3D geometrygeometryperpendicular
injective is surjective

Source: Romania District Olympiad 2013,grade X(problem 3)

3/14/2013
Take the function f:RRf:\mathbb{R}\to \mathbb{R}, f(x)=ax,xQ,f(x)=bx,xR\Qf\left( x \right)=ax,x\in \mathbb{Q},f\left( x \right)=bx,x\in \mathbb{R}\backslash \mathbb{Q}, where aa and bb are two real numbers different from 0. Prove that ff is injective if and only if ff is surjective.
functionalgebra proposedalgebra
matrix

Source: Romania District Olympiad 2013,grade XI(problem 3)

3/14/2013
Let AA be an non-invertible of order nn, n>1n>1, with the elements in the set of complex numbers, with all the elements having the module equal with 1
a)Prove that, for n=3n=3, two rows or two columns of the AA matrix are proportional b)Does the conclusion from the previous exercise remains true for n=4n=4?
linear algebramatrixabstract algebracomplex numbersalgebra proposedalgebra
Integral

Source: Romania District Olympiad 2013,grade XII (Problem 3)

3/11/2013
Problem 3. Let f:[0,π2][0,)f:\left[ 0,\frac{\pi }{2} \right]\to \left[ 0,\infty \right) an increasing function .Prove that: (a) 0π2(f(x)f(π4))(sinxcosx)dx0.\int_{0}^{\frac{\pi }{2}}{\left( f\left( x \right)-f\left( \frac{\pi }{4} \right) \right)}\left( \sin x-\cos x \right)dx\ge 0. (b) Exist a[π4,π2]a\in \left[ \frac{\pi }{4},\frac{\pi }{2} \right] such that 0af(x)sinx dx=0af(x)cosx dx.\int_{0}^{a}{f\left( x \right)\sin x\ dx=}\int_{0}^{a}{f\left( x \right)\cos x\ dx}.
calculusintegrationfunctiontrigonometrycalculus computations