MathDB
Inequality

Source: Romania District Olympiad 2013,grade IX(problem 3)

March 10, 2013
inequalitiesinequalities proposed

Problem Statement

Let nNn\in {{\mathbb{N}}^{*}} and a1,a2,...,anR{{a}_{1}},{{a}_{2}},...,{{a}_{n}}\in \mathbb{R} so a1+a2+...+akk,()k{1,2,...,n}.{{a}_{1}}+{{a}_{2}}+...+{{a}_{k}}\le k,\left( \forall \right)k\in \left\{ 1,2,...,n \right\}.Prove that a11+a22+...+ann11+12+...+1n\frac{{{a}_{1}}}{1}+\frac{{{a}_{2}}}{2}+...+\frac{{{a}_{n}}}{n}\le \frac{1}{1}+\frac{1}{2}+...+\frac{1}{n}