MathDB
Integral

Source: Romania District Olympiad 2013,grade XII (Problem 3)

March 11, 2013
calculusintegrationfunctiontrigonometrycalculus computations

Problem Statement

Problem 3. Let f:[0,π2][0,)f:\left[ 0,\frac{\pi }{2} \right]\to \left[ 0,\infty \right) an increasing function .Prove that: (a) 0π2(f(x)f(π4))(sinxcosx)dx0.\int_{0}^{\frac{\pi }{2}}{\left( f\left( x \right)-f\left( \frac{\pi }{4} \right) \right)}\left( \sin x-\cos x \right)dx\ge 0. (b) Exist a[π4,π2]a\in \left[ \frac{\pi }{4},\frac{\pi }{2} \right] such that 0af(x)sinx dx=0af(x)cosx dx.\int_{0}^{a}{f\left( x \right)\sin x\ dx=}\int_{0}^{a}{f\left( x \right)\cos x\ dx}.