MathDB

Problems(6)

digits

Source:

3/5/2005
Prove that for all a{0,1,2,,9}a\in\{0,1,2,\ldots,9\} the following sum is divisible by 10: Sa=a2005+1a2005+2a2005++9a2005. S_a = \overline{a}^{2005} + \overline{1a}^{2005} + \overline{2a}^{2005} + \cdots + \overline{9a}^{2005}.
AMCAIMEUSA(J)MOUSAMOmodular arithmeticLaTeXbinomial coefficients
decimal points, periodic fraction representation

Source:

3/5/2005
Let MM be the set of the positive rational numbers less than 1, which can be expressed with a 10-distinct digits period in decimal representation. a) Find the arithmetic mean of all the elements in MM; b) Prove that there exists a positive integer nn, 1<n<10101<n<10^{10}, such that naan\cdot a - a is a non-negative integer, for all aMa\in M.
easy and classical inequality

Source: RMO District 2005, 9th Grade, Problem 1

3/5/2005
a) Prove that if x,y>0x,y>0 then xy2+yx21x+1y. \frac x{y^2} + \frac y{x^2} \geq \frac 1x + \frac 1y. b) Prove that if a,b,ca,b,c are positive real numbers, then a+bc2+b+ca2+c+ab22(1a+1b+1c). \frac {a+b}{c^2} + \frac {b+c}{a^2} + \frac {c+a}{b^2} \geq 2 \left( \frac 1a + \frac 1b + \frac 1c \right).
inequalitiesalgebrapolynomialAMCUSA(J)MOUSAMOrearrangement inequality
monotonous exponential functions

Source: RMO District 2005, 10th Grade, Problem 1

3/5/2005
Let a,b>1a,b>1 be two real numbers. Prove that a>ba>b if and only if there exists a function f:(0,)Rf: (0,\infty)\to\mathbb{R} such that i) the function g:RRg:\mathbb{R}\to\mathbb{R}, g(x)=f(ax)xg(x)=f(a^x)-x is increasing; ii) the function h:RRh:\mathbb{R}\to\mathbb{R}, h(x)=f(bx)xh(x)=f(b^x)-x is decreasing.
functionalgebra proposedalgebra
Romania District Olympiad 2005 - Grade XI

Source:

4/10/2011
Let HH denote the set of the matrices from Mn(N)\mathcal{M}_n(\mathbb{N}) and let PP the set of matrices from HH for which the sum of the entries from any row or any column is equal to 11.
a)If APA\in P, prove that detA=±1\det A=\pm 1.
b)If A1,A2,,ApHA_1,A_2,\ldots,A_p\in H and A1A2ApPA_1A_2\cdot \ldots\cdot A_p\in P, prove that A1,A2,,ApPA_1,A_2,\ldots,A_p\in P.
linear algebramatrixlinear algebra unsolved
coloring nice sets

Source: RMO District 2005, 12th Grade, Problem 1

3/5/2005
Let A1A_1, A2A_2, \ldots, AnA_n, n2n\geq 2 be nn finite sets with the properties i) Ai2|A_i| \geq 2, for all 1in1\leq i \leq n; ii) AiAj1|A_i\cap A_j| \neq 1, for all 1i<jn1\leq i<j\leq n. Prove that the elements of the set i=1nAi\displaystyle \bigcup_{i=1}^n A_i can be colored with 2 colors, such that all the sets AiA_i are bi-color, for all 1in1\leq i \leq n.
inductioncombinatorics proposedcombinatorics