MathDB
monotonous exponential functions

Source: RMO District 2005, 10th Grade, Problem 1

March 5, 2005
functionalgebra proposedalgebra

Problem Statement

Let a,b>1a,b>1 be two real numbers. Prove that a>ba>b if and only if there exists a function f:(0,)Rf: (0,\infty)\to\mathbb{R} such that i) the function g:RRg:\mathbb{R}\to\mathbb{R}, g(x)=f(ax)xg(x)=f(a^x)-x is increasing; ii) the function h:RRh:\mathbb{R}\to\mathbb{R}, h(x)=f(bx)xh(x)=f(b^x)-x is decreasing.