MathDB
Problems
Contests
National and Regional Contests
PEN Problems
PEN G Problems
PEN G Problems
Part of
PEN Problems
Subcontests
(30)
30
1
Hide problems
G 30
Let
α
=
0.
d
1
d
2
d
3
⋯
\alpha=0.d_{1}d_{2}d_{3} \cdots
α
=
0.
d
1
d
2
d
3
⋯
be a decimal representation of a real number between
0
0
0
and
1
1
1
. Let
r
r
r
be a real number with
∣
r
∣
<
1
\vert r \vert<1
∣
r
∣
<
1
. [*] If
α
\alpha
α
and
r
r
r
are rational, must
∑
i
=
1
∞
d
i
r
i
\sum_{i=1}^{\infty} d_{i}r^{i}
∑
i
=
1
∞
d
i
r
i
be rational? [*] If
∑
i
=
1
∞
d
i
r
i
\sum_{i=1}^{\infty} d_{i}r^{i}
∑
i
=
1
∞
d
i
r
i
and
r
r
r
are rational,
α
\alpha
α
must be rational?
29
1
Hide problems
G 29
Let
p
(
x
)
=
x
3
+
a
1
x
2
+
a
2
x
+
a
3
p(x)=x^{3}+a_{1}x^{2}+a_{2}x+a_{3}
p
(
x
)
=
x
3
+
a
1
x
2
+
a
2
x
+
a
3
have rational coefficients and have roots
r
1
r_{1}
r
1
,
r
2
r_{2}
r
2
, and
r
3
r_{3}
r
3
. If
r
1
−
r
2
r_{1}-r_{2}
r
1
−
r
2
is rational, must
r
1
r_{1}
r
1
,
r
2
r_{2}
r
2
, and
r
3
r_{3}
r
3
be rational?
28
1
Hide problems
G 28
Do there exist real numbers
a
a
a
and
b
b
b
such that [*]
a
+
b
a+b
a
+
b
is rational and
a
n
+
b
n
a^n +b^n
a
n
+
b
n
is irrational for all
n
∈
N
n \in \mathbb{N}
n
∈
N
with
n
≥
2
n \ge 2
n
≥
2
? [*]
a
+
b
a+b
a
+
b
is irrational and
a
n
+
b
n
a^n +b^n
a
n
+
b
n
is rational for all
n
∈
N
n \in \mathbb{N}
n
∈
N
with
n
≥
2
n \ge 2
n
≥
2
?
27
1
Hide problems
G 27
Let
1
<
a
1
<
a
2
<
⋯
1<a_{1}<a_{2}<\cdots
1
<
a
1
<
a
2
<
⋯
be a sequence of positive integers. Show that
2
a
1
a
1
!
+
2
a
2
a
2
!
+
2
a
3
a
3
!
+
⋯
\frac{2^{a_{1}}}{{a_{1}}!}+\frac{2^{a_{2}}}{{a_{2}}!}+\frac{2^{a_{3}}}{{a_{3}}!}+\cdots
a
1
!
2
a
1
+
a
2
!
2
a
2
+
a
3
!
2
a
3
+
⋯
is irrational.
26
1
Hide problems
G 26
Prove that if
g
≥
2
g \ge 2
g
≥
2
is an integer, then two series
∑
n
=
0
∞
1
g
n
2
and
∑
n
=
0
∞
1
g
n
!
\sum_{n=0}^{\infty}\frac{1}{g^{n^{2}}}\;\; \text{and}\;\; \sum_{n=0}^{\infty}\frac{1}{g^{n!}}
n
=
0
∑
∞
g
n
2
1
and
n
=
0
∑
∞
g
n
!
1
both converge to irrational numbers.
25
1
Hide problems
G 25
Show that
tan
(
π
m
)
\tan \left( \frac{\pi}{m} \right)
tan
(
m
π
)
is irrational for all positive integers
m
≥
5
m \ge 5
m
≥
5
.
24
1
Hide problems
G 24
Let
{
a
n
}
n
≥
1
\{a_{n}\}_{n \ge 1}
{
a
n
}
n
≥
1
be a sequence of positive numbers such that
a
n
+
1
2
=
a
n
+
1
,
n
∈
N
.
a_{n+1}^{2}= a_{n}+1, \;\; n \in \mathbb{N}.
a
n
+
1
2
=
a
n
+
1
,
n
∈
N
.
Show that the sequence contains an irrational number.
23
1
Hide problems
G 23
Let
f
(
x
)
=
∏
n
=
1
∞
(
1
+
x
2
n
)
f(x)=\prod_{n=1}^{\infty} \left( 1 + \frac{x}{2^n} \right)
f
(
x
)
=
∏
n
=
1
∞
(
1
+
2
n
x
)
. Show that at the point
x
=
1
x=1
x
=
1
,
f
(
x
)
f(x)
f
(
x
)
and all its derivatives are irrational.
22
1
Hide problems
G 22
For a positive real number
α
\alpha
α
, define
S
(
α
)
=
{
⌊
n
α
⌋
∣
n
=
1
,
2
,
3
,
⋯
}
.
S(\alpha)=\{ \lfloor n\alpha\rfloor \; \vert \; n=1,2,3,\cdots \}.
S
(
α
)
=
{⌊
n
α
⌋
∣
n
=
1
,
2
,
3
,
⋯
}
.
Prove that
N
\mathbb{N}
N
cannot be expressed as the disjoint union of three sets
S
(
α
)
S(\alpha)
S
(
α
)
,
S
(
β
)
S(\beta)
S
(
β
)
, and
S
(
γ
)
S(\gamma)
S
(
γ
)
.
21
1
Hide problems
G 21
Prove that if
α
\alpha
α
and
β
\beta
β
are positive irrational numbers satisfying \frac{1}{\alpha}\plus{}\frac{1}{\beta}\equal{} 1, then the sequences
⌊
α
⌋
,
⌊
2
α
⌋
,
⌊
3
α
⌋
,
⋯
\lfloor\alpha\rfloor,\lfloor 2\alpha\rfloor,\lfloor 3\alpha\rfloor,\cdots
⌊
α
⌋
,
⌊
2
α
⌋
,
⌊
3
α
⌋
,
⋯
and
⌊
β
⌋
,
⌊
2
β
⌋
,
⌊
3
β
⌋
,
⋯
\lfloor\beta\rfloor,\lfloor 2\beta\rfloor,\lfloor 3\beta\rfloor,\cdots
⌊
β
⌋
,
⌊
2
β
⌋
,
⌊
3
β
⌋
,
⋯
together include every positive integer exactly once.
20
1
Hide problems
G 20
You are given three lists A, B, and C. List A contains the numbers of the form
1
0
k
10^{k}
1
0
k
in base 10, with
k
k
k
any integer greater than or equal to 1. Lists B and C contain the same numbers translated into base 2 and 5 respectively:
A
B
C
10
1010
20
100
1100100
400
1000
1111101000
13000
⋮
⋮
⋮
.
\begin{array}{lll}A & B & C \\ 10 & 1010 & 20 \\ 100 & 1100100 & 400 \\ 1000 & 1111101000 & 13000 \\ \vdots & \vdots & \vdots \end{array}.
A
10
100
1000
⋮
B
1010
1100100
1111101000
⋮
C
20
400
13000
⋮
.
Prove that for every integer
n
>
1
n > 1
n
>
1
, there is exactly one number in exactly one of the lists B or C that has exactly
n
n
n
digits.
19
1
Hide problems
G 19
Let
n
n
n
be an integer greater than or equal to 3. Prove that there is a set of
n
n
n
points in the plane such that the distance between any two points is irrational and each set of three points determines a non-degenerate triangle with a rational area.
18
1
Hide problems
G 18
Show that the cube roots of three distinct primes cannot be terms in an arithmetic progression.
17
1
Hide problems
G 17
Suppose that
p
,
q
∈
N
p, q \in \mathbb{N}
p
,
q
∈
N
satisfy the inequality
exp
(
1
)
⋅
(
p
+
q
−
q
)
2
<
1.
\exp(1)\cdot( \sqrt{p+q}-\sqrt{q})^{2}<1.
exp
(
1
)
⋅
(
p
+
q
−
q
)
2
<
1.
Show that
ln
(
1
+
p
q
)
\ln \left(1+\frac{p}{q}\right)
ln
(
1
+
q
p
)
is irrational.
16
1
Hide problems
G 16
For each integer
n
≥
1
n \ge 1
n
≥
1
, prove that there is a polynomial
P
n
(
x
)
P_{n}(x)
P
n
(
x
)
with rational coefficients such that
x
4
n
(
1
−
x
)
4
n
=
(
1
+
x
)
2
P
n
(
x
)
+
(
−
1
)
n
4
n
x^{4n}(1-x)^{4n}=(1+x)^{2}P_{n}(x)+(-1)^{n}4^{n}
x
4
n
(
1
−
x
)
4
n
=
(
1
+
x
)
2
P
n
(
x
)
+
(
−
1
)
n
4
n
. Define the rational number
a
n
a_{n}
a
n
by
a
n
=
(
−
1
)
n
−
1
4
n
−
1
∫
0
1
P
n
(
x
)
d
x
,
n
=
1
,
2
,
⋯
.
a_{n}= \frac{(-1)^{n-1}}{4^{n-1}}\int_{0}^{1}P_{n}(x) \; dx,\; n=1,2, \cdots.
a
n
=
4
n
−
1
(
−
1
)
n
−
1
∫
0
1
P
n
(
x
)
d
x
,
n
=
1
,
2
,
⋯
.
Prove that
a
n
a_{n}
a
n
satisfies the inequality
∣
π
−
a
n
∣
<
1
4
5
n
−
1
,
n
=
1
,
2
,
⋯
.
\left\vert \pi-a_{n}\right\vert < \frac{1}{4^{5n-1}}, \; n=1,2, \cdots.
∣
π
−
a
n
∣
<
4
5
n
−
1
1
,
n
=
1
,
2
,
⋯
.
15
1
Hide problems
G 15
Prove that for any
p
,
q
∈
N
p, q\in\mathbb{N}
p
,
q
∈
N
with
q
>
1
q > 1
q
>
1
the following inequality holds: \left\vert\pi\minus{}\frac{p}{q}\right\vert\ge q^{\minus{}42}.
14
1
Hide problems
G 14
For which angles
θ
\theta
θ
, with
θ
\theta
θ
a rational number of degrees, is {\tan}^{2}\theta\plus{}{\tan}^{2}2\theta is irrational?
13
1
Hide problems
G 13
It is possible to show that \csc\frac{3\pi}{29}\minus{}\csc\frac{10\pi}{29}\equal{} 1.999989433.... Prove that there are no integers
j
j
j
,
k
k
k
,
n
n
n
with odd
n
n
n
satisfying \csc\frac{j\pi}{n}\minus{}\csc\frac{k\pi}{n}\equal{} 2.
12
1
Hide problems
G 12
An integer-sided triangle has angles
p
θ
p\theta
pθ
and
q
θ
q\theta
qθ
, where
p
p
p
and
q
q
q
are relatively prime integers. Prove that
cos
θ
\cos\theta
cos
θ
is irrational.
11
1
Hide problems
G 11
Show that
cos
1
∘
\cos 1^{\circ}
cos
1
∘
is irrational.
10
1
Hide problems
G 10
Show that
1
π
arccos
(
1
2003
)
\frac{1}{\pi} \arccos \left( \frac{1}{\sqrt{2003}} \right)
π
1
arccos
(
2003
1
)
is irrational.
9
1
Hide problems
G 9
Show that
cos
π
7
\cos \frac{\pi}{7}
cos
7
π
is irrational.
8
1
Hide problems
G 8
Show that
e
=
∑
n
=
0
∞
1
n
!
e=\sum^{\infty}_{n=0} \frac{1}{n!}
e
=
∑
n
=
0
∞
n
!
1
is irrational.
7
1
Hide problems
G 7
Show that
π
\pi
π
is irrational.
6
1
Hide problems
G 6
Prove that for any irrational number
ξ
\xi
ξ
, there are infinitely many rational numbers
m
n
\frac{m}{n}
n
m
(
(
m
,
n
)
∈
Z
×
N
)
\left( (m,n) \in \mathbb{Z}\times \mathbb{N}\right)
(
(
m
,
n
)
∈
Z
×
N
)
such that
∣
ξ
−
n
m
∣
<
1
5
m
2
.
\left\vert \xi-\frac{n}{m}\right\vert < \frac{1}{\sqrt{5}m^{2}}.
ξ
−
m
n
<
5
m
2
1
.
5
1
Hide problems
G 5
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
be integers, not all equal to
0
0
0
. Show that \frac{1}{4a^{2}\plus{}3b^{2}\plus{}2c^{2}}\le\vert\sqrt[3]{4}a\plus{}\sqrt[3]{2}b\plus{}c\vert.
4
1
Hide problems
G 4
Let
a
,
b
,
c
a, b, c
a
,
b
,
c
be integers, not all zero and each of absolute value less than one million. Prove that
∣
a
+
b
2
+
c
3
∣
>
1
1
0
21
.
\left\vert a+b\sqrt{2}+c\sqrt{3}\right\vert > \frac{1}{10^{21}}.
a
+
b
2
+
c
3
>
1
0
21
1
.
3
1
Hide problems
G 3
Prove that there exist positive integers
m
m
m
and
n
n
n
such that \left\vert\frac{m^{2}}{n^{3}}\minus{}\sqrt{2001}\right\vert <\frac{1}{10^{8}}.
2
1
Hide problems
G 2
Prove that for any positive integers
a
a
a
and
b
b
b
\left\vert a\sqrt{2}\minus{}b\right\vert >\frac{1}{2(a\plus{}b)}.
1
1
Hide problems
G 1
Find the smallest positive integer
n
n
n
such that
0
<
n
4
−
⌊
n
4
⌋
<
0.00001.
0< \sqrt[4]{n}-\lfloor \sqrt[4]{n}\rfloor < 0.00001.
0
<
4
n
−
⌊
4
n
⌋
<
0.00001.