MathDB
G 16

Source:

May 25, 2007
algebrapolynomialintegrationinequalitiesIrrational numbers

Problem Statement

For each integer n1n \ge 1, prove that there is a polynomial Pn(x)P_{n}(x) with rational coefficients such that x4n(1x)4n=(1+x)2Pn(x)+(1)n4nx^{4n}(1-x)^{4n}=(1+x)^{2}P_{n}(x)+(-1)^{n}4^{n}. Define the rational number ana_{n} by an=(1)n14n101Pn(x)  dx,  n=1,2,.a_{n}= \frac{(-1)^{n-1}}{4^{n-1}}\int_{0}^{1}P_{n}(x) \; dx,\; n=1,2, \cdots. Prove that ana_{n} satisfies the inequality πan<145n1,  n=1,2,.\left\vert \pi-a_{n}\right\vert < \frac{1}{4^{5n-1}}, \; n=1,2, \cdots.