MathDB
Problems
Contests
National and Regional Contests
Bosnia Herzegovina Contests
Bosnia Herzegovina Team Selection Test
2009 Bosnia Herzegovina Team Selection Test
2009 Bosnia Herzegovina Team Selection Test
Part of
Bosnia Herzegovina Team Selection Test
Subcontests
(3)
3
2
Hide problems
Bosnia 2009 Problem 3
a
1
,
a
2
,
…
,
a
100
a_{1},a_{2},\dots,a_{100}
a
1
,
a
2
,
…
,
a
100
are real numbers such that:
a
1
≥
a
2
≥
⋯
≥
a
100
≥
0
a_{1}\geq a_{2}\geq\dots\geq a_{100}\geq0
a
1
≥
a
2
≥
⋯
≥
a
100
≥
0
a
1
2
+
a
2
2
≥
100
a_{1}^{2}+a_{2}^{2}\geq100
a
1
2
+
a
2
2
≥
100
a
3
2
+
a
4
2
+
⋯
+
a
100
2
≥
100
a_{3}^{2}+a_{4}^{2}+\dots+a_{100}^{2}\geq100
a
3
2
+
a
4
2
+
⋯
+
a
100
2
≥
100
What is the minimum value of sum
a
1
+
a
2
+
⋯
+
a
100
.
a_{1}+a_{2}+\dots+a_{100}.
a
1
+
a
2
+
⋯
+
a
100
.
Bosnia 2009 Problem 6
Let
n
n
n
be a positive integer and
x
x
x
positive real number such that none of numbers
x
,
2
x
,
…
,
n
x
x,2x,\dots,nx
x
,
2
x
,
…
,
n
x
and none of
1
x
,
2
x
,
…
,
⌊
n
x
⌋
x
\frac{1}{x},\frac{2}{x},\dots,\frac{\left\lfloor nx\right\rfloor }{x}
x
1
,
x
2
,
…
,
x
⌊
n
x
⌋
is an integer. Prove that
⌊
x
⌋
+
⌊
2
x
⌋
+
⋯
+
⌊
n
x
⌋
+
⌊
1
x
⌋
+
⌊
2
x
⌋
+
⋯
+
⌊
⌊
n
x
⌋
x
⌋
=
n
⌊
n
x
⌋
\left\lfloor x\right\rfloor +\left\lfloor 2x\right\rfloor +\dots+\left\lfloor nx\right\rfloor +\left\lfloor \frac{1}{x}\right\rfloor +\left\lfloor \frac{2}{x}\right\rfloor +\dots+\left\lfloor \frac{\left\lfloor nx\right\rfloor }{x}\right\rfloor =n\left\lfloor nx\right\rfloor
⌊
x
⌋
+
⌊
2
x
⌋
+
⋯
+
⌊
n
x
⌋
+
⌊
x
1
⌋
+
⌊
x
2
⌋
+
⋯
+
⌊
x
⌊
n
x
⌋
⌋
=
n
⌊
n
x
⌋
1
2
Hide problems
Bosnia 2009 Problem 1
Denote by
M
M
M
and
N
N
N
feets of perpendiculars from
A
A
A
to angle bisectors of exterior angles at
B
B
B
and
C
,
C,
C
,
in triangle
△
A
B
C
.
\triangle ABC.
△
A
BC
.
Prove that the length of segment
M
N
MN
MN
is equal to semiperimeter of triangle
△
A
B
C
.
\triangle ABC.
△
A
BC
.
1xn table
Given an
1
1
1
x
n
n
n
table (
n
≥
2
n\geq 2
n
≥
2
), two players alternate the moves in which they write the signs + and - in the cells of the table. The first player always writes +, while the second always writes -. It is not allowed for two equal signs to appear in the adjacent cells. The player who can’t make a move loses the game. Which of the players has a winning strategy?
2
2
Hide problems
Bosnia 2009 Problem 2 a^2(b-a)/(b+a) = square of prime
Find all pairs
(
a
,
b
)
\left(a,b\right)
(
a
,
b
)
of posive integers such that
a
2
(
b
−
a
)
b
+
a
\frac{a^{2}\left(b-a\right)}{b+a}
b
+
a
a
2
(
b
−
a
)
is square of prime.
Bosnia 2009 Problem 5
Line
p
p
p
intersects sides
A
B
AB
A
B
and
B
C
BC
BC
of triangle
△
A
B
C
\triangle ABC
△
A
BC
at points
M
M
M
and
K
.
K.
K
.
If area of triangle
△
M
B
K
\triangle MBK
△
MB
K
is equal to area of quadrilateral
A
M
K
C
,
AMKC,
A
M
K
C
,
prove that
∣
M
B
∣
+
∣
B
K
∣
∣
A
M
∣
+
∣
C
A
∣
+
∣
K
C
∣
≥
1
3
\frac{\left|MB\right|+\left|BK\right|}{\left|AM\right|+\left|CA\right|+\left|KC\right|}\geq\frac{1}{3}
∣
A
M
∣
+
∣
C
A
∣
+
∣
K
C
∣
∣
MB
∣
+
∣
B
K
∣
≥
3
1