MathDB
Problems
Contests
National and Regional Contests
Bosnia Herzegovina Contests
Bosnia Herzegovina Team Selection Test
2009 Bosnia Herzegovina Team Selection Test
2
Bosnia 2009 Problem 5
Bosnia 2009 Problem 5
Source:
August 8, 2010
geometry
geometry proposed
Problem Statement
Line
p
p
p
intersects sides
A
B
AB
A
B
and
B
C
BC
BC
of triangle
△
A
B
C
\triangle ABC
△
A
BC
at points
M
M
M
and
K
.
K.
K
.
If area of triangle
△
M
B
K
\triangle MBK
△
MB
K
is equal to area of quadrilateral
A
M
K
C
,
AMKC,
A
M
K
C
,
prove that
∣
M
B
∣
+
∣
B
K
∣
∣
A
M
∣
+
∣
C
A
∣
+
∣
K
C
∣
≥
1
3
\frac{\left|MB\right|+\left|BK\right|}{\left|AM\right|+\left|CA\right|+\left|KC\right|}\geq\frac{1}{3}
∣
A
M
∣
+
∣
C
A
∣
+
∣
K
C
∣
∣
MB
∣
+
∣
B
K
∣
≥
3
1
Back to Problems
View on AoPS