MathDB
Bosnia 2009 Problem 6

Source:

August 15, 2010
floor functiongeometryanalytic geometryalgebra proposedalgebra

Problem Statement

Let nn be a positive integer and xx positive real number such that none of numbers x,2x,,nxx,2x,\dots,nx and none of 1x,2x,,nxx\frac{1}{x},\frac{2}{x},\dots,\frac{\left\lfloor nx\right\rfloor }{x} is an integer. Prove that x+2x++nx+1x+2x++nxx=nnx \left\lfloor x\right\rfloor +\left\lfloor 2x\right\rfloor +\dots+\left\lfloor nx\right\rfloor +\left\lfloor \frac{1}{x}\right\rfloor +\left\lfloor \frac{2}{x}\right\rfloor +\dots+\left\lfloor \frac{\left\lfloor nx\right\rfloor }{x}\right\rfloor =n\left\lfloor nx\right\rfloor