MathDB
x_1,\dots,x_n

Source: Iran TST 2002

September 27, 2006
ceiling functioninequalities proposedinequalities

Problem Statement

Assume x1,x2,,xnR+x_{1},x_{2},\dots,x_{n}\in\mathbb R^{+}, i=1nxi2=n\sum_{i=1}^{n}x_{i}^{2}=n, i=1nxis>0\sum_{i=1}^{n}x_{i}\geq s>0 and 0λ10\leq\lambda\leq1. Prove that at least s2(1λ)2n\left\lceil\frac{s^{2}(1-\lambda)^{2}}n\right\rceil of these numbers are larger than λsn\frac{\lambda s}{n}.