MathDB
Problems
Contests
National and Regional Contests
Iran Contests
Iran Team Selection Test
2002 Iran Team Selection Test
6
6
Part of
2002 Iran Team Selection Test
Problems
(1)
x_1,\dots,x_n
Source: Iran TST 2002
9/27/2006
Assume
x
1
,
x
2
,
…
,
x
n
∈
R
+
x_{1},x_{2},\dots,x_{n}\in\mathbb R^{+}
x
1
,
x
2
,
…
,
x
n
∈
R
+
,
∑
i
=
1
n
x
i
2
=
n
\sum_{i=1}^{n}x_{i}^{2}=n
∑
i
=
1
n
x
i
2
=
n
,
∑
i
=
1
n
x
i
≥
s
>
0
\sum_{i=1}^{n}x_{i}\geq s>0
∑
i
=
1
n
x
i
≥
s
>
0
and
0
≤
λ
≤
1
0\leq\lambda\leq1
0
≤
λ
≤
1
. Prove that at least
⌈
s
2
(
1
−
λ
)
2
n
⌉
\left\lceil\frac{s^{2}(1-\lambda)^{2}}n\right\rceil
⌈
n
s
2
(
1
−
λ
)
2
⌉
of these numbers are larger than
λ
s
n
\frac{\lambda s}{n}
n
λ
s
.
ceiling function
inequalities proposed
inequalities