MathDB
Miklos Schweitzer 1972_11

Source:

November 5, 2008
probability and stats

Problem Statement

We throw N N balls into n n urns, one by one, independently and uniformly. Let X_i\equal{}X_i(N,n) be the total number of balls in the i ith urn. Consider the random variable y(N,n)\equal{}\min_{1 \leq i \leq n}|X_i\minus{}\frac Nn|. Verify the following three statements: (a) If n n \rightarrow \infty and N/n3 N/n^3 \rightarrow \infty, then P \left(\frac{y(N,n)}{\frac 1n \sqrt{\frac Nn}}0 \ . (b) If n n\rightarrow \infty and N/n3K N/n^3 \leq K (K K constant), then for any ε>0 \varepsilon > 0 there is an A>0 A > 0 such that P(y(N,n) < A) > 1\minus{}\varepsilon . (c) If n n \rightarrow \infty and N/n30 N/n^3 \rightarrow 0 then P(y(N,n)<1)1. P(y(N,n) < 1) \rightarrow 1. P. Revesz