MathDB
Problems
Contests
Undergraduate contests
Miklós Schweitzer
1972 Miklós Schweitzer
11
11
Part of
1972 Miklós Schweitzer
Problems
(1)
Miklos Schweitzer 1972_11
Source:
11/5/2008
We throw
N
N
N
balls into
n
n
n
urns, one by one, independently and uniformly. Let X_i\equal{}X_i(N,n) be the total number of balls in the
i
i
i
th urn. Consider the random variable y(N,n)\equal{}\min_{1 \leq i \leq n}|X_i\minus{}\frac Nn|. Verify the following three statements: (a) If
n
→
∞
n \rightarrow \infty
n
→
∞
and
N
/
n
3
→
∞
N/n^3 \rightarrow \infty
N
/
n
3
→
∞
, then P \left(\frac{y(N,n)}{\frac 1n \sqrt{\frac Nn}}
0 \ . (b) If
n
→
∞
n\rightarrow \infty
n
→
∞
and
N
/
n
3
≤
K
N/n^3 \leq K
N
/
n
3
≤
K
(
K
K
K
constant), then for any
ε
>
0
\varepsilon > 0
ε
>
0
there is an
A
>
0
A > 0
A
>
0
such that P(y(N,n) < A) > 1\minus{}\varepsilon . (c) If
n
→
∞
n \rightarrow \infty
n
→
∞
and
N
/
n
3
→
0
N/n^3 \rightarrow 0
N
/
n
3
→
0
then
P
(
y
(
N
,
n
)
<
1
)
→
1.
P(y(N,n) < 1) \rightarrow 1.
P
(
y
(
N
,
n
)
<
1
)
→
1.
P. Revesz
probability and stats