MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania National Olympiad
1999 Romania National Olympiad
2a
making the product to the fraction and reversing the sign
making the product to the fraction and reversing the sign
Source: ROMANIA 1999
July 15, 2005
inequalities
inequalities proposed
Problem Statement
let
x
i
,
y
i
1
≤
i
≤
n
x_i,y_i 1 \le i \le n
x
i
,
y
i
1
≤
i
≤
n
be positive numbers such that :
∑
i
=
1
n
x
i
≥
∑
i
=
1
n
x
i
y
i
\displaystyle \sum_{i=1}^n x_i \ge \sum_{i=1}^n x_iy_i
i
=
1
∑
n
x
i
≥
i
=
1
∑
n
x
i
y
i
Prove :
∑
i
=
1
n
x
i
≤
∑
i
=
1
n
x
i
y
i
\displaystyle \sum_{i=1}^n x_i \le \sum _{i=1}^n \frac{x_i}{y_i}
i
=
1
∑
n
x
i
≤
i
=
1
∑
n
y
i
x
i
Back to Problems
View on AoPS