MathDB
Problems
Contests
National and Regional Contests
Romania Contests
Romania National Olympiad
1999 Romania National Olympiad
2a
2a
Part of
1999 Romania National Olympiad
Problems
(1)
making the product to the fraction and reversing the sign
Source: ROMANIA 1999
7/15/2005
let
x
i
,
y
i
1
≤
i
≤
n
x_i,y_i 1 \le i \le n
x
i
,
y
i
1
≤
i
≤
n
be positive numbers such that :
∑
i
=
1
n
x
i
≥
∑
i
=
1
n
x
i
y
i
\displaystyle \sum_{i=1}^n x_i \ge \sum_{i=1}^n x_iy_i
i
=
1
∑
n
x
i
≥
i
=
1
∑
n
x
i
y
i
Prove :
∑
i
=
1
n
x
i
≤
∑
i
=
1
n
x
i
y
i
\displaystyle \sum_{i=1}^n x_i \le \sum _{i=1}^n \frac{x_i}{y_i}
i
=
1
∑
n
x
i
≤
i
=
1
∑
n
y
i
x
i
inequalities
inequalities proposed