MathDB
Every real number - IMO LongList 1992 TUR3

Source:

September 2, 2010
logarithmspigeonhole principlealgebracalculuslimitIMO ShortlistIMO Longlist

Problem Statement

Let S={πn1992mm,nZ}.S = \{\frac{\pi^n}{1992^m} | m,n \in \mathbb Z \}. Show that every real number x0x \geq 0 is an accumulation point of S.S.