MathDB
Problems
Contests
International Contests
IMO Longlists
1992 IMO Longlists
74
74
Part of
1992 IMO Longlists
Problems
(1)
Every real number - IMO LongList 1992 TUR3
Source:
9/2/2010
Let
S
=
{
π
n
199
2
m
∣
m
,
n
∈
Z
}
.
S = \{\frac{\pi^n}{1992^m} | m,n \in \mathbb Z \}.
S
=
{
199
2
m
π
n
∣
m
,
n
∈
Z
}
.
Show that every real number
x
≥
0
x \geq 0
x
≥
0
is an accumulation point of
S
.
S.
S
.
logarithms
pigeonhole principle
algebra
calculus
limit
IMO Shortlist
IMO Longlist