MathDB
Interesting abelian subgroup of the complex numbers

Source:

December 13, 2019
functiongroup theoryabstract algebracomplex numbers

Problem Statement

Let be the set G={(u,v)C2u0} G=\{ (u,v)\in \mathbb{C}^2| u\neq 0 \} and a function φ:C{0}C{0} \varphi :\mathbb{C}\setminus\{ 0\}\longrightarrow\mathbb{C}\setminus\{ 0\} having the property that the operation :G2G *:G^2\longrightarrow G defined as (a,b)(c,d)=(ac,bc+dφ(a)) (a,b)*(c,d)=(ac,bc+d\varphi (a)) is associative.
a) Show that (G,) (G,*) is a group. b) Describe φ, \varphi , knowing that (G,)(G,*) is a commutative group.
Marius Perianu