MathDB

Problems(6)

Fractional part property

Source:

12/13/2019
Let be two real numbers x,y, x,y, and a natural number n0 n_0 such that {n0x}={n0y} \{ n_0x \} = \{ n_0y \} and {(n0+1)x}={(n0+1)y}, \{ (n_0+1)x \} = \{ (n_0+1)y \} , where {} \{\} denotes the fractional part. Show that {nx}={ny}, \{ nx \} =\{ ny \} , for any natural number n. n.
Ovidiu Pop
algebraequationsFloorfractional part
function in C(2)

Source: Nicolae Coculescu contest

11/19/2013
Let wCRw\in \mathbb{C}\setminus \mathbb{R}, w1|w|\neq 1. Prove that f ⁣:CCf\colon \mathbb{C} \to \mathbb{C}, given by f(z)=z+wzf(z)= z+w\overline{z}, is a bijection, and find its inverse.
functionalgebra proposedalgebra
Integer part of expression dependent on the sides of a triangle

Source:

12/13/2019
Calculate (a2+b2+c2)(a+b+c)a3+b3+c3, \left\lfloor \frac{(a^2+b^2+c^2)(a+b+c)}{a^3+b^3+c^3} \right\rfloor , where a,b,c a,b,c are the lengths of the side of a triangle.
Costel Anghel
geometryalgebraFloorinequalitiesthree variable inequality
f(x+y)+f(x-y)=f(x)+f(y) +f(f(x+y))

Source:

12/13/2019
Find all functions f:QR f:\mathbb{Q}\longrightarrow\mathbb{R} satisfying the equation f(x+y)+f(xy)=f(x)+f(y)+f(f(x+y)), f(x+y)+f(x-y)=f(x)+f(y) +f(f(x+y)) , for any rational numbers x,y. x,y.
Mihai Onucu Drîmbe
functionFind all functionsalgebra
Matrices A s.t. tr(A)=tr(A²)=0

Source:

12/13/2019
Let K \mathbb{K} be a field and let be a matrix MM3(K) M\in\mathcal{M}_3(\mathbb{K} ) having the property that tr(A)=tr(A2)=0. \text{tr} (A) =\text{tr} (A^2) =0 . Show that there is a μK \mu\in \mathbb{K} such that A3=μA A^3=\mu A or A3=μI. A^3=\mu I.
Cristinel Mortici
linear algebramatrix
Interesting abelian subgroup of the complex numbers

Source:

12/13/2019
Let be the set G={(u,v)C2u0} G=\{ (u,v)\in \mathbb{C}^2| u\neq 0 \} and a function φ:C{0}C{0} \varphi :\mathbb{C}\setminus\{ 0\}\longrightarrow\mathbb{C}\setminus\{ 0\} having the property that the operation :G2G *:G^2\longrightarrow G defined as (a,b)(c,d)=(ac,bc+dφ(a)) (a,b)*(c,d)=(ac,bc+d\varphi (a)) is associative.
a) Show that (G,) (G,*) is a group. b) Describe φ, \varphi , knowing that (G,)(G,*) is a commutative group.
Marius Perianu
functiongroup theoryabstract algebracomplex numbers