MathDB
Romania District Olympiad 2004 - Grade XI

Source:

April 10, 2011
limitPutnamreal analysisreal analysis unsolved

Problem Statement

Let (xn)n0(x_n)_{n\ge 0} a sequence of real numbers defined by x0>0x_0>0 and xn+1=xn+1xnx_{n+1}=x_n+\frac{1}{\sqrt{x_n}}. Compute limnxn\lim_{n\to \infty}x_n and limnxn3n2\lim_{n\to \infty} \frac{x_n^3}{n^2}.