MathDB
Problems
Contests
National and Regional Contests
Romania Contests
District Olympiad
2004 District Olympiad
1
Romania District Olympiad 2004 - Grade XI
Romania District Olympiad 2004 - Grade XI
Source:
April 10, 2011
limit
Putnam
real analysis
real analysis unsolved
Problem Statement
Let
(
x
n
)
n
≥
0
(x_n)_{n\ge 0}
(
x
n
)
n
≥
0
a sequence of real numbers defined by
x
0
>
0
x_0>0
x
0
>
0
and
x
n
+
1
=
x
n
+
1
x
n
x_{n+1}=x_n+\frac{1}{\sqrt{x_n}}
x
n
+
1
=
x
n
+
x
n
1
. Compute
lim
n
→
∞
x
n
\lim_{n\to \infty}x_n
lim
n
→
∞
x
n
and
lim
n
→
∞
x
n
3
n
2
\lim_{n\to \infty} \frac{x_n^3}{n^2}
lim
n
→
∞
n
2
x
n
3
.
Back to Problems
View on AoPS