MathDB
Weird Ineq

Source: 2016 KMO Senior #3

November 12, 2016
geometrygeometric inequalityKorea

Problem Statement

Acute triangle ABC\triangle ABC has area SS and perimeter LL. A point PP inside ABC\triangle ABC has dist(P,BC)=1,dist(P,CA)=1.5,dist(P,AB)=2dist(P,BC)=1, dist(P,CA)=1.5, dist(P,AB)=2. Let BCAP=DBC \cap AP = D, CABP=ECA \cap BP = E, ABCP=FAB \cap CP= F. Let TT be the area of DEF\triangle DEF. Prove the following inequality.
(ADBECFT)2>4L2+(ABBCCA24S)2 \left( \frac{AD \cdot BE \cdot CF}{T} \right)^2 > 4L^2 + \left( \frac{AB \cdot BC \cdot CA}{24S} \right)^2