Acute triangle △ABC has area S and perimeter L. A point P inside △ABC has dist(P,BC)=1,dist(P,CA)=1.5,dist(P,AB)=2. Let BC∩AP=D, CA∩BP=E, AB∩CP=F.
Let T be the area of △DEF. Prove the following inequality.(TAD⋅BE⋅CF)2>4L2+(24SAB⋅BC⋅CA)2 geometrygeometric inequalityKorea