MathDB
Riemann Sums

Source: 2021 ISL A5

July 12, 2022
algebrareal analysisinequalities

Problem Statement

Let n2n\geq 2 be an integer and let a1,a2,,ana_1, a_2, \ldots, a_n be positive real numbers with sum 11. Prove that k=1nak1ak(a1+a2++ak1)2<13.\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.