MathDB
Problems
Contests
International Contests
IMO Shortlist
2021 IMO Shortlist
A5
A5
Part of
2021 IMO Shortlist
Problems
(1)
Riemann Sums
Source: 2021 ISL A5
7/12/2022
Let
n
≥
2
n\geq 2
n
≥
2
be an integer and let
a
1
,
a
2
,
…
,
a
n
a_1, a_2, \ldots, a_n
a
1
,
a
2
,
…
,
a
n
be positive real numbers with sum
1
1
1
. Prove that
∑
k
=
1
n
a
k
1
−
a
k
(
a
1
+
a
2
+
⋯
+
a
k
−
1
)
2
<
1
3
.
\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.
k
=
1
∑
n
1
−
a
k
a
k
(
a
1
+
a
2
+
⋯
+
a
k
−
1
)
2
<
3
1
.
algebra
real analysis
inequalities