Max of the sum of the square.
Source: Canada 2000, Problem 5
March 4, 2006
inequalities unsolvedinequalities
Problem Statement
Suppose that the real numbers satisfy
\begin{eqnarray*} 0 \leq a_{100} \leq a_{99} \leq \cdots \leq a_2 &\leq& a_1 , \\ a_1+a_2 & \leq & 100 \\ a_3+a_4+\cdots+a_{100} &\leq & 100. \end{eqnarray*}
Determine the maximum possible value of , and find all possible sequences which achieve this maximum.