Suppose that the real numbers a1,a2,…,a100 satisfy
\begin{eqnarray*} 0 \leq a_{100} \leq a_{99} \leq \cdots \leq a_2 &\leq& a_1 , \\ a_1+a_2 & \leq & 100 \\ a_3+a_4+\cdots+a_{100} &\leq & 100. \end{eqnarray*}
Determine the maximum possible value of a12+a22+⋯+a1002, and find all possible sequences a1,a2,…,a100 which achieve this maximum. inequalities unsolvedinequalities