MathDB
a=\frac{x_1^2+x_2^2+... + x_n^ 2}{x_1x_2 ... x_n}

Source: Argentina 2003 OMA L3 p3

May 12, 2024
algebranumber theory

Problem Statement

Let a4a\geq 4 be a positive integer. Determine the smallest value of n5n\geq 5, nan\neq a, such that aa can be represented in the forma=x12+x22++xn2x1x2xna=\frac{x_1^2+x_2^2+\cdots + x_n^ 2}{x_1x_2\cdots x_n}for a suitable choice of the nn positive integers x1,x2,,xnx_1,x_2,\ldots ,x_n.