MathDB
Problems
Contests
National and Regional Contests
Argentina Contests
Argentina National Olympiad
2003 Argentina National Olympiad
3
3
Part of
2003 Argentina National Olympiad
Problems
(1)
a=\frac{x_1^2+x_2^2+... + x_n^ 2}{x_1x_2 ... x_n}
Source: Argentina 2003 OMA L3 p3
5/12/2024
Let
a
≥
4
a\geq 4
a
≥
4
be a positive integer. Determine the smallest value of
n
≥
5
n\geq 5
n
≥
5
,
n
≠
a
n\neq a
n
=
a
, such that
a
a
a
can be represented in the form
a
=
x
1
2
+
x
2
2
+
⋯
+
x
n
2
x
1
x
2
⋯
x
n
a=\frac{x_1^2+x_2^2+\cdots + x_n^ 2}{x_1x_2\cdots x_n}
a
=
x
1
x
2
⋯
x
n
x
1
2
+
x
2
2
+
⋯
+
x
n
2
for a suitable choice of the
n
n
n
positive integers
x
1
,
x
2
,
…
,
x
n
x_1,x_2,\ldots ,x_n
x
1
,
x
2
,
…
,
x
n
.
algebra
number theory