MathDB
Recursive Sequence

Source:

April 2, 2013
induction

Problem Statement

Let (an)n1(a_n)_{n\geq 1} be a sequence such that a1=1a_1=1 and 3an+13an=13a_{n+1}-3a_n=1 for all n1n\geq 1. Find a2002a_{2002}.
<spanclass=latexbold>(A)</span>666<spanclass=latexbold>(B)</span>667<spanclass=latexbold>(C)</span>668<spanclass=latexbold>(D)</span>669<spanclass=latexbold>(E)</span>670<span class='latex-bold'>(A) </span>666\qquad<span class='latex-bold'>(B) </span>667\qquad<span class='latex-bold'>(C) </span>668\qquad<span class='latex-bold'>(D) </span>669\qquad<span class='latex-bold'>(E) </span>670