MathDB

5

Part of 2002 AMC 10

Problems(3)

8 Circles

Source:

2/11/2008
Each of the small circles in the figure has radius one. The innermost circle is tangent to the six circles that surround it, and each of those circles is tangent to the large circle and to its small-circle neighbors. Find the area of the shaded region. [asy]unitsize(.3cm); defaultpen(linewidth(.8pt)); path c=Circle((0,2),1); filldraw(Circle((0,0),3),grey,black); filldraw(Circle((0,0),1),white,black); filldraw(c,white,black); filldraw(rotate(60)*c,white,black); filldraw(rotate(120)*c,white,black); filldraw(rotate(180)*c,white,black); filldraw(rotate(240)*c,white,black); filldraw(rotate(300)*c,white,black);[/asy]<spanclass=latexbold>(A)</span> π<spanclass=latexbold>(B)</span> 1.5π<spanclass=latexbold>(C)</span> 2π<spanclass=latexbold>(D)</span> 3π<spanclass=latexbold>(E)</span> 3.5π <span class='latex-bold'>(A)</span>\ \pi \qquad <span class='latex-bold'>(B)</span>\ 1.5\pi \qquad <span class='latex-bold'>(C)</span>\ 2\pi \qquad <span class='latex-bold'>(D)</span>\ 3\pi \qquad <span class='latex-bold'>(E)</span>\ 3.5\pi
geometry
Shaded Region in Circles

Source:

2/26/2008
Circles of radius 2 2 and 3 3 are externally tangent and are circumscribed by a third circle, as shown in the figure. Find the area of the shaded region. [asy]unitsize(3mm); defaultpen(linewidth(0.7)+fontsize(8));
filldraw(Circle((0,0),5),grey,black); filldraw(Circle((-2,0),3),white,black); filldraw(Circle((3,0),2),white,black); dot((-2,0)); dot((3,0)); draw((-2,0)--(1,0)); draw((3,0)--(5,0)); label("33",(-0.5,0),N); label("22",(4,0),N);[/asy] <spanclass=latexbold>(A)</span> 3π<spanclass=latexbold>(B)</span> 4π<spanclass=latexbold>(C)</span> 6π<spanclass=latexbold>(D)</span> 9π<spanclass=latexbold>(E)</span> 12π <span class='latex-bold'>(A)</span>\ 3\pi \qquad <span class='latex-bold'>(B)</span>\ 4\pi \qquad <span class='latex-bold'>(C)</span>\ 6\pi \qquad <span class='latex-bold'>(D)</span>\ 9\pi \qquad <span class='latex-bold'>(E)</span>\ 12\pi
geometry
Recursive Sequence

Source:

4/2/2013
Let (an)n1(a_n)_{n\geq 1} be a sequence such that a1=1a_1=1 and 3an+13an=13a_{n+1}-3a_n=1 for all n1n\geq 1. Find a2002a_{2002}.
<spanclass=latexbold>(A)</span>666<spanclass=latexbold>(B)</span>667<spanclass=latexbold>(C)</span>668<spanclass=latexbold>(D)</span>669<spanclass=latexbold>(E)</span>670<span class='latex-bold'>(A) </span>666\qquad<span class='latex-bold'>(B) </span>667\qquad<span class='latex-bold'>(C) </span>668\qquad<span class='latex-bold'>(D) </span>669\qquad<span class='latex-bold'>(E) </span>670
induction