MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2003 Moldova National Olympiad
12.8
Limit involving the fibonacci sequence
Limit involving the fibonacci sequence
Source: Moldovan MO 2003
February 21, 2006
limit
function
calculus
calculus computations
Problem Statement
Let
(
F
n
)
n
∈
N
∗
(F_n)_{n\in{N^*}}
(
F
n
)
n
∈
N
∗
be the Fibonacci sequence defined by
F
1
=
1
F_1=1
F
1
=
1
,
F
2
=
1
F_2=1
F
2
=
1
,
F
n
+
1
=
F
n
+
F
n
−
1
F_{n+1}=F_n+F_{n-1}
F
n
+
1
=
F
n
+
F
n
−
1
for every
n
≥
2
n\geq{2}
n
≥
2
. Find the limit:
lim
n
→
∞
(
∑
i
=
1
n
F
i
2
i
)
\lim_{n \to \infty}(\sum_{i=1}^n{\frac{F_i}{2^i}})
n
→
∞
lim
(
i
=
1
∑
n
2
i
F
i
)
Back to Problems
View on AoPS