MathDB
Problems
Contests
National and Regional Contests
Moldova Contests
Moldova National Olympiad
2003 Moldova National Olympiad
12.8
12.8
Part of
2003 Moldova National Olympiad
Problems
(1)
Limit involving the fibonacci sequence
Source: Moldovan MO 2003
2/21/2006
Let
(
F
n
)
n
∈
N
∗
(F_n)_{n\in{N^*}}
(
F
n
)
n
∈
N
∗
be the Fibonacci sequence defined by
F
1
=
1
F_1=1
F
1
=
1
,
F
2
=
1
F_2=1
F
2
=
1
,
F
n
+
1
=
F
n
+
F
n
−
1
F_{n+1}=F_n+F_{n-1}
F
n
+
1
=
F
n
+
F
n
−
1
for every
n
≥
2
n\geq{2}
n
≥
2
. Find the limit:
lim
n
→
∞
(
∑
i
=
1
n
F
i
2
i
)
\lim_{n \to \infty}(\sum_{i=1}^n{\frac{F_i}{2^i}})
n
→
∞
lim
(
i
=
1
∑
n
2
i
F
i
)
limit
function
calculus
calculus computations